

Ciência e Tecnologia na era da Inteligência Artificial: Desdobramentos no Ensino Pesquisa e Extensão 20 a 23 de novembro de 2023 - *Campus Ponta Grossa, PR*

Obtenção de um catalisador com estrutura do tipo Perovskita utilizando Hidróxido de Amônio através do método de co-precipitação

Obtaining a catalyst with a Perovskite structure using Ammonium Hydroxide through the co-precipitation method

Jeferson Rocha Queiroz¹, Felipe Antônio Dela Rosa², Fernando Alves da Silva³

RESUMO

A pesquisa voltada para a criação de materiais catalíticos destinados para a melhoria de reações de reforma a vapor do etanol para produzir hidrogênio, com o objetivo de aprimorar a eficiência de sistemas já em uso, desempenha um papel fundamental na construção de um futuro cada vez mais sustentável. O presente trabalho parte da hipótese da formação de estruturas cristalinas do tipo peroviskita e a presença de mesoporos em um catalisador de óxidos mistos de cobre e níquel, sendo o nióbio empregado como suporte, utilizando o método de coprecipitação. A caracterização do catalisador foi feita através da análise de DRX e Fisissorção de N2, e confirmaram a formação da estrutura peroviskita e mesoporos. Os resultados obtidos utilizando o hidróxido de amônio como agente precipitante forneceu uma estrutura e morfologia que podem ser mais adequadas para a utilização deste material na reação de reforma de vapor do etanol para produção de hidrogênio.

PALAVRAS-CHAVE: Catalisador; coprecipitação; mesoporos; reforma a vapor, hidrogênio.

ABSTRACT

Research aimed at creating catalytic materials aimed at improving ethanol steam reforming reactions to produce hydrogen, with the aim of improving the efficiency of systems already in use, plays a fundamental role in building an increasingly sustainable future. The present work is based on the hypothesis of the formation of peroviskite-type crystalline structures and the presence of mesopores in a catalyst of mixed copper and nickel oxides, with niobium used as support, using the coprecipitation method. The characterization of the catalyst was done through XRD and N_2 Physisorption analysis, and confirmed the formation of the peroviskite structure and mesopores. The results obtained using ammonium hydroxide as a precipitating agent provided a structure and morphology that may be more suitable for the use of this material in the ethanol vapor reforming reaction to produce hydrogen.

KEYWORDS: Catalyst; coprecipitation; mesopores; steam reforming of ethanol, hydrogen.

INTRODUÇÃO

Uma alternativa amplamente discutida e difundia nos dias atuais para a produção de energia limpa é a utilização do hidrogênio (H₂) como vetor energético. O hidrogênio já é apontado como "combustível do futuro", por possuir uma combustão sem emissão de gases poluentes e é uma fonte renovável e inesgotável, sendo o elemento mais abundante no universo.

A investigação sobre a síntese de materiais catalisadores que auxiliam nas reações químicas de reforma de vapor do etanol, que visam aumentar a eficiência de sistemas já

¹ Voluntário de Iniciação Cientifica. Universidade Tecnológica Federal do Paraná, Apucarana, Paraná, Brasil. E-mail:jefersonqueiroz@alunos.utfpr.edu.br ID Lattes: 0214620995806404.

² Voluntário de Iniciação Cientifica. Universidade Tecnológica Federal do Paraná, Apucarana, Paraná, Brasil. E-mail: felros@alunos.utfpr.edu.br. ID Lattes: 9828598156726505.

³ Docente no Programa de Mestrado em Engenharia Química (PPGEQ-AP). Universidade Tecnológica Federal do Paraná, Apucarana, Paraná, Brasil. E-mail: fernandoa@utfpr.edu.br. ID Lattes: 4913976138341762.

Ciência e Tecnologia na era da Inteligência Artificial: Desdobramentos no Ensino Pesquisa e Extensão 20 a 23 de novembro de 2023 - *Campus Ponta Grossa, PR*

estabelecidos, é de extrema importância para um futuro cada vez menos agressivo com o meio ambiente (ARMOR, 1999).

A reforma a vapor envolve a decomposição do etanol na presença de vapor de água em alta temperatura. Esse processo resulta na produção de uma mistura de gases, incluindo hidrogênio, monóxido de carbono e dióxido de carbono. Todo o CO₂ gerado no processo de reforma do etanol é absorvido pelas plantações de cana de açúcar, em um ciclo fechado de produção e consumo de CO₂, resultando em balanço nulo de emissão de CO₂ novo na atmosfera.

O presente trabalho tem como objetivo sintetizar e caracterizar um catalisador, obtido pelo método de coprecipitação utilizando o hidróxido de amônio, como agente precursor, produzido com Cobre (Cu) e Níquel (Ni), utilizando o Nb₂O₅ como suporte, com a proporção de 1% de cobre, 5% de níquel e 94% de nióbio (Nb), para ser utilizado na reação de reforma de vapor do etanol, além de descrever o método de preparo do catalisador, uma vez que o método de preparo influi no desempenho do catalisador sintetizado.

Com a caracterização do catalisador obtido é possível avaliar a estrutura e fazer uma previsão de sua atividade, seletividade e resistência à desativação.

A avaliação do catalisador foi feita através de área superficial específica (BET) através da análise de adsorção e dessorção de N_2 e difração de raios X (DRX).

METODOLOGIA

MATERIAIS

- HY-340 Precursor de nióbio Companhia Brasileira de Metal e Metalurgia, CBMM).
- Ácido oxálico PA, P.M=126,07g.mol⁻¹
- Nitrato de Cobre: (BIOTEC) Cu(NO₃).3H₂O P.M=241,60 g.mol⁻¹, 98%.
- Nitrato de Níquel: (DINÂMICA) Ni(NO₃).6H₂O P.M=290,81 g.mol⁻¹, 97%.

MÉTODOS

Foi preparada uma solução de 9,46g de ácido oxálico diluída em 150 mL de água. Com a solução preparada, 97 mL dessa solução foi transferida para um béquer com 2,83g de Nióbio (Nb) e levada a uma placa de aquecimento, mantida em 75 °C com agitação constante. Após 25 horas de aquecimento e agitação, foi adicionado 10 mL da solução mãe de ácido oxálico nessa solução. Transcorridas 20 horas da última adição de ácido, houve um acréscimo de 20 mL, totalizando 137 mL. A solução ficou descansando por 24 horas e ganhou um aspecto translúcido.

Posteriormente, foi adicionado 0,1190g de Cu e 0,7643g de Ni a essa solução para serem precipitadas com o auxílio do Hidróxido de Amônio. O cobre e o níquel foram previamente submetidos em um dessecador com bomba a vácuo por uma hora, com o objetivo de eliminar a umidade presente nos reagentes.

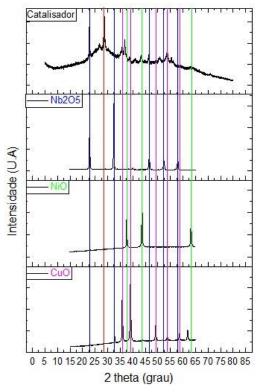
A precipitação ocorreu com a adição lenta de Hidróxido de Amônio com agitação constante. A quantidade de Hidróxido de Amônio total adicionada foi de 350 mL.

Após esse procedimento, a amostra foi levada para uma estufa onde ficou por 24 horas para secagem. Por fim, calcinou-se a amostra em uma mufla. A mufla seguiu um

Ciência e Tecnologia na era da Inteligência Artificial: Desdobramentos no Ensino Pesquisa e Extensão 20 a 23 de novembro de 2023 - *Campus Ponta Grossa, PR*

padrão de programação de temperatura com taxa de aquecimento de 10°C/min, da temperatura ambiente até 500°C, mantido por 5 horas.

CARACTERIZAÇÃO DO CATALISADOR


A amostra de catalisador foi submetida à adsorção-dessorção de N_2 a 77 K para caracterização textural em equipamento NOVA 1200 séries da Quatachrome. A amostra foi previamente ativada em vácuo para remoção de possíveis adsorbatos, a 300 °C durante 4 horas. A isoterma foi utilizada para determinação da distribuição de tamanho de poros, tamanho médio, área específica e volume de poros pelo método DFT (Density Function Theory).

Com o objetivo de identificar o estado cristalino na estrutura do catalisador, foram utilizadas análises de DRX (difração de raios X) pelo método do pó. Os difratogramas das amostras calcinadas (alumina pura, óxido de níquel e catalisador) foram obtidos em equipamento Bruker, modelo D8 Advanced equipado com forno XRK 900, com 2θ variando entre 5° e 65°, com passo de 0,019°, 0,58 °/min de velocidade do goniômetro, e fonte de radiação Cu-Kα (40 kV e 35 mA).

RESULTADOS E DISCUSSÕES

As amostras de Nb₂O₅, NiO, CuO e catalisadora foram submetidas a uma análise de DRX para a determinação da estrutura do catalisador, e estão apresentadas na Figura 1.

Figura 1 – Padrões de difração de raio X das amostras de CuO, NiO, Nb₂O₅ e comparadas com o catalisador sintetizado.

Fonte: Autoria própria (2023).

Ciência e Tecnologia na era da Inteligência Artificial: Desdobramentos no Ensino Pesquisa e Extensão 20 a 23 de novembro de 2023 - *Campus Ponta Grossa, PR*

Os picos alargados do catalisador demostram que o agente precipitante (NH₄OH) não contribui para a formação de uma rede cristalina bem definida, como pode ser observada para os padrões de óxidos puro. Uma boa cristalinidade não indica necessariamente que o catalisador será seletivo.

O pico onde não há coincidência com os padrões, sugere a formação de uma fase mista, característica da estrutura cristalina do tipo peroviskita.

A estrutura do catalisador tem característica que indica a formação da estrutura do tipo perovskita, devido a formação de novos picos que não coincidem com cobre, níquel ou suporte puros; há também regiões onde ocorreu apenas dispersão de cobre ou níquel cristalinos na superfície do nióbio.

O cobre e o níquel que se encontram na superfície do catalisador favorecem a atividade catalítica quando estão bem dispersos. Essa dispersão é confirmada com a análise da porosidade do catalisador.

A isoterma de adsorção-dessorção de N_2 para o catalisador é apresentada na Figura 2. Neste método a quantidade total do N_2 fisissorvida é medida em função da pressão relativa do gás exercida sobre a amostra, permitindo que a monocamada seja estimada e o volume total de poros.

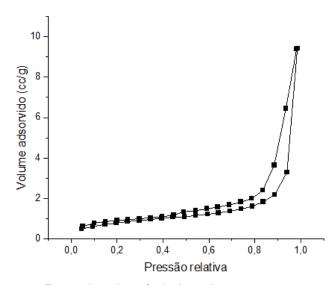


Figura 2 – Isoterma de Adsorção-Dessorção de nitrogênio.

Fonte: Autoria própria (2023).

A isoterma possui características de material mesoporoso, com um patamar a baixos valores de pressão relativa, associados a adsorção de nitrogênio em poros de menores tamanho, seguido do aumento do volume adsorvido em pressões relativas maiores, referente a região mesoporosa da amostra. A saturação dos poros, observado no final da isoterma, indica o preenchimento completo dos poros; neste ponto, o volume total de poros pode ser estimado em função do volume total de gás adsorvido.

Também foi observado a formação de histerese entre as curvas, comportamento comum em mesoporos devido ao fenômeno de condensação capilar que ocorre do

Ciência e Tecnologia na era da Inteligência Artificial: Desdobramentos no Ensino Pesquisa e Extensão 20 a 23 de novembro de 2023 - *Campus Ponta Grossa, PR*

nitrogênio. Em materiais microporosos, esta histerese não ocorre, o que confirma que a morfologia do material se apresenta como mesoporoso.

Para confirmar o tamanho médio de poros na faixa mesoporosa, uma distribuição de tamanho de poros foi obtida, a partir dos dados da isoterma, e é apresentado na Figura 3.

Figura 3 – Distribuição de tamanho de poros no catalisador

Fonte: Autoria própria (2023).

O resultado demonstra uma distribuição multimodal, indicando poros de vários tamanhos na amostra. No entanto, os valores estão compreendidos na faixa de 2 a 14 nm, que é associado à morfologia mesoporosa de sólidos porosos, de acordo com a classificação da IUPAC. Esse tamanho de poros favorece a difusão durante a reação química.

Quadro 1 - Classificação da porosidade de um sólido

Classificação (IUPAC 1985)	Diâmetro
Microporos	< 2 nm
Mesoporos	2 ~ 50 nm
Macroporos	>50 nm

Fonte: Sing et. al, 1985.

A porosidade aumenta a área superficial de uma amostra, contribuindo com a distribuição dos metais em sua estrutura e essa dispersão dos metais favorece a atividade catalítica. De acordo com a análise da isoterma e da distribuição de tamanho de poros, a área específica obtida foi de 2,38 m²/g, enquanto o volume de poros foi de 0,012cm³/g; já para o tamanho médio de poros da distribuição, o valor obtido foi de 6,68 nm.

Ciência e Tecnologia na era da Inteligência Artificial: Desdobramentos no Ensino Pesquisa e Extensão 20 a 23 de novembro de 2023 - *Campus Ponta Grossa, PR*

CONCLUSÕES

Os resultados das análises tanto da estrutura do catalisador como de sua morfologia indicam que o método de coprecipitação utilizando o hidróxido de amônio forneceu uma estrutura adequada para a utilização deste material na reação de reforma de vapor do etanol. O agente orgânico utilizado na coprecipitação favoreceu a formação de um catalisador mesoporoso, com alta área específica, o que indica uma boa dispersão dos metais de sua superfície. A morfologia de materiais mesoporosos é adequada para a reação utilizando o etanol, pois favorece a difusividade da molécula alvo para dentro do catalisador. O resultado de DRX confirmou que houve a formação de uma fase mista, característica da estrutura cristalina do tipo peroviskita.

Agradecimentos

Os autores agradecem ao LAMAP Apucarana pela realização das caracterizações das amostras.

Conflito de interesse

Não há conflito de interesse.

REFERÊNCIAS

ARMOR, J. N. Striving for catalytically green processes in the 21st century. **Applied Catalysis A: General**, v. 189, p. 153-162, 1999.

THOMMES, M. Physisorption of gases, with special reference to the evaluation. (IUPAC Technical Report). **Pure Applied Chemistry**. 2015;