

Ciência e Tecnologia na era da Inteligência Artificial: Desdobramentos no Ensino Pesquisa e Extensão 20 a 23 de novembro de 2023 - *Campus Ponta Grossa, PR*

Estudo preliminar da Redução do Cromo (VI) utilizando catalisador de Nb₂O₅

Preliminary study of Chromium (VI) Reduction using Nb2O5 catalyst

Marcelo Augusto Auwerter¹, Arthur Mariani Silva², Maria Eduarda K. Fuziki³, Giane Gonçalves Lenzi⁴

RESUMO

Neste estudo, o catalisador Nb_2O_5 foi aplicado no processo fotocatalítico para redução do Cromo. Cr(VI) é um composto classificado como altamente tóxico e frequentemente encontrado em efluentes de curtumes industriais. As técnicas utilizadas para a caracterização do material fotocatalítico foram: difração de raios X, e microscopia eletrônica de varredura (MEV) e espectrometria de energia dispersiva de raios X (EDS). Os resultados indicaram que o Niobio sem tratamento térmico se apresenta como um material amorfo. Além disso, superfície do catalisador tem uma morfologia rugosa e porosa. Visando isso a presente pesquisa propõe o estudo envolvendo a redução do cromo através de fotocatálise utilizando o nióbio. Os resultados demonstram que embora não seja um marco significativo, houve uma degradação de 5% em um tempo de 30 minutos.

PALAVRAS-CHAVE: Redução do Cromo, Fotocatálise Heterogênea, Nióbio.

ABSTRACT

In this study, the Nb_2O_5 catalyst was applied in the photocatalytic process to reduce Chromium. Cr(VI) is a compound classified as highly toxic and frequently found in effluents from industrial tanneries. The techniques used to characterize the photocatalytic material were: X-ray diffraction, scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The results indicated that Niobio without heat treatment appears as an amorphous material. Furthermore, the catalyst surface has a rough and porous morphology. With this in mind, this research proposes a study involving the reduction of chromium through photocatalysis using niobium. The results demonstrate that although not a significant milestone, there was a 5% degradation in a time of 30 minutes.

KEYWORDS: Chromium Reduction, Heterogeneous Photocatalysis, Niobium.

INTRODUÇÃO

O cromo (Cr) é um metal de transição com número atômico 24, conhecido por suas formas trivalentes estáveis (III) e hexavalentes (VI), sendo esta última altamente tóxica e relacionada a mutações no DNA humano (Almeida et al., 2019; Shanker et al., 2005; Wise et al., 2012). Sua contaminação de solos e corpos d'água muitas vezes resulta de efluentes industriais inadequadamente descartados, como no caso dos curtumes, tornando essa indústria uma das mais poluentes (Sawalha et al., 2019).

¹ Marcelo Augusto Auwerter. Universidade Tecnológica Federal do Paraná, Ponta Grossa, Paraná, Brasil. E-mail: marceloauwerter@alunos.utfpr.edu.br. ID Lattes: 8225716775257473.

² Arthur Mariani Silva. Universidade Tecnológica Federal do Paraná, Ponta Grossa, Paraná, Brasil. E-mail: arthurmarianisilva@alunos.utfpr.edu.br. ID Lattes: 2524850887802681

³ Departamento de Engenharia Química, Universidade Estadual de Maringá, Maringá, Paraná, Brasil. E-mail: mariafuziki@gmail.com. ID Lattes: 1216201337200705

⁴ Docente no Departamento de Engenharia Química, Programa de Pós-graduação em Engenharia de Produção. Universidade Tecnológica Federal do Paraná, Ponta Grossa, Paraná, Brasil. E-mail: gianeg@utfpr.edu.br. ID Lattes: 6021910491013265.

Ciência e Tecnologia na era da Inteligência Artificial: Desdobramentos no Ensino Pesquisa e Extensão

20 a 23 de novembro de 2023 - *Campus Ponta Grossa, PR*

Além do curtimento, o cromo é usado em outros processos industriais, como revestimento de metais e preservação de madeira, e pesquisas estão sendo conduzidas para encontrar métodos de eliminação, redução e degradação do cromo hexavalente. Isso inclui o uso de nanomateriais, eletrocoagulação, tratamento biológico e precipitação química (Almeida et al., 2018; Nithya et al., 2019; Un et al., 2017; Mamais et al., 2016; Sun et al., 2006).

Neste contexto, o estudo se concentra na avaliação preliminar da viabilidade de usar o pentóxido de nióbio (Nb2O5) para reduzir o cromo hexavalente (Cr VI). O Nb2O5 é um semicondutor com propriedades semelhantes ao TiO2, amplamente utilizado em atividades fotocatalíticas. Ele é conhecido por sua estabilidade química, atoxicidade e valor de band gap próximo ao do TiO2 (3,4 eV).

Este trabalho também investiga as propriedades do catalisador Nb2O5 por meio de várias técnicas de caracterização.

METODOLOGIA

CARACTERIZAÇÃO

Difração de raios X:

A amostra foi medida em um Difratômetro Rigaku-Denki com radiação Cu-K α (λ = 1,5406 Å) a uma tensão de 140 V e corrente de 40 mA. Assim, o padrão obtido foi comparado com os cartões do conjunto de dados de difração do Centro Internacional de Dados de Difração (ICDD).

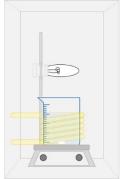
Microscopia Eletrônica de Varredura (MEV) associada a Espectroscopia por Energia Dispersiva (EDS):

O Equipamento para esta análise foi um microscópio eletrônico de varredura modelo VEGA 3 LMU-TESCAN com resolução de 3,0 nm, filamento de 30 kV, detectores SE e BSE retráteis, baixo vácuo (500 Pa), diâmetro interno da câmara de 230 mm e porta de abertura de 148 mm, 5 eixos platina compucêntrica, motorizada e com movimentos X: 80mm, Y: 60mm e Z: 47mm. Para a análise EDS foi utilizado o mesmo equipamento do MEV, porém equipado com um detector EDS, modelo AZTec Energy X-Act, resolução 130 eV (Oxford).

TESTES FOTOCATALÍTICOS:

O estudo teve como objetivo reduzir o cromo a partir de uma solução de dicromato de potássio (K2Cr2O7) em água ultra pura (20mg/L). O pH da solução foi ajustado usando ácido clorídrico (HCl) e hidróxido de sódio (NaOH) em diferentes níveis de pH (2,0, 3,0 e 5,0). Um catalisador de nióbio puro (sem tratamento térmico) foi adicionado à solução a uma concentração de 0,5g/L para realizar a catálise heterogênea.

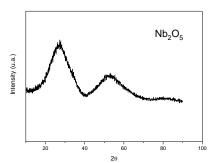
Os testes começaram com um período de 30 minutos de adsorção para atingir o equilíbrio adsorção/dessorção. A mistura foi agitada em um reator de 600 mL com agitação magnética e mantida a 15°C. A radiação ultravioleta foi fornecida por uma lâmpada de vapor de mercúrio de 250W, sem o bulbo de vidro externo para evitar interferências.



Ciência e Tecnologia na era da Inteligência Artificial: Desdobramentos no Ensino Pesquisa e Extensão 20 a 23 de novembro de 2023 - *Campus Ponta Grossa, PR*

Amostras foram coletadas em intervalos de tempo pré-determinados (5, 10, 15 e 30 minutos de fotocatálise) após os 30 minutos iniciais de adsorção. Essas amostras passaram por centrifugação a 6000 rpm por 5 minutos. A concentração foi medida através da absorbância usando um espectrofotômetro UV-Vis a um comprimento de onda de 355 nm, e a concentração foi calculada com base na Lei de Beer, que relaciona concentração e absorbância. O sistema experimental é representado na Figura 1.

Figura 1 - Representação esquemática da câmara fotocatalítica.


Fonte: Autoria Própria (2023).

RESULTADOS E DISCUSSÕES

CARACTERIZAÇÃO

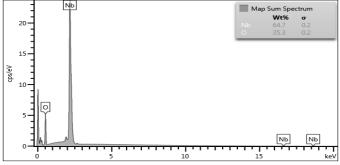

Os resultados de difração de raios X, do catalisador Nb_2O_5 sem tratamento térmico, é apresentado na Fig. 2. O resultado indica que o catalisador apresenta uma estrutura amorfa. Apesar de não indicar fases cristalinas, o que ocorre apenas após o tratamento térmico, de acordo com a literatura, quando ocorre a calcinação do catalisador, ocorre a diminuição da área superficial específica. O catalisador não calcinado apresenta uma área superficial de 182 m2 g⁻¹, enquanto calcinado a 873K apresenta uma área de apenas 13 m2 g⁻¹.

Figura 2 - DRX da amostra de Nb₂O₅.

Fonte: Autoria própria (2023).

Figura 3 - Gráfico EDS amostra de nióbio

Fonte: Autoria própria (2023).

Ciência e Tecnologia na era da Inteligência Artificial: Desdobramentos no Ensino Pesquisa e Extensão 20 a 23 de novembro de 2023 - Campus Ponta Grossa, PR

Figura 4 - Quadro de caracterização MEV e EDS.

C)

Fonte: Autoria própria (2023).

Figura 5 - Amostra de nióbio

Fonte: Autoria própria (2023).

A partir dos resultados obtidos com as caracterizações realizadas, MEV e EDS, constatou-se que o material possui uma superfície rugosa e porosa (Figura 4b). Além disso, pode-se verificar que é composto pelos elementos Oxigênio e predominantemente Nióbio que compõe aproximadamente 64% da superfície (EDS - Fig.4 c). Uma amostra de nióbio é indicada na figura 5.

O band gap do nióbio é indicado na literatura como sendo 3,45 eV, este resultado indica que é um valor acima do valor obtido para o TiO2 (3,2 eV). Sendo este um fator importante, pois quanto maior o band gap, maior é a energia necessária para o elétron ir da banda de condução para a banda de valência.

Testes Fotocatalíticos Preliminares

O resultado preliminar para a redução do Cromo (VI) é apresentado na Fig. 4.

Figura 5 – Gráfico de resultados preliminares da redução de cromo (VI).

7 6

Remoção (%) de Cr(VI) em 30 min de irradiação 5 4 3 -2 1 pH 2 pH 3 pH 5 pH da solução

Fonte: Autoria própria (2023).

Ciência e Tecnologia na era da Inteligência Artificial: Desdobramentos no Ensino Pesquisa e Extensão 20 a 23 de novembro de 2023 - *Campus Ponta Grossa, PR*

Os resultados foram similares para as diferentes condições estudadas (pH 2,3 e 5) em um tempo de 30 min de reação. É descrito na literatura que o pH ácido favorece a reação de redução de Cr(VI), isto devido que neste meio (ácido) o composto é mais solúvel e com maior poder de percolação. Além disso, nas reações fotocatalíticas, a primeira etapa da reação é a adsorção da molécula poluente na superfície do fotocatalisador. Essa etapa de adsorção é influenciada pelos radicais hidroxila formados (OH●), que por sua vez dependem do pH da solução. Em reações ácidas, a superfície de catalisadores como o Nb₂O₅ tende a ser carregado positivamente, o que pode, por atração eletrostática, facilitar a adsorção do ânion cromato nos catalisadores e assim prosseguir com a reação de fotocatálise (Khalil et al., 1998). Apesar de não ser uma redução expressiva, em torno de 5%, o intuito foi verificar se existia a atividade catalítica, o que foi comprovado.

CONCLUSÕES

Os resultados indicaram que o nióbio possui uma estrutura amorfa, com a superfície rugosa e porosa, o que o possivelmente proporciona uma alta área superficial. Os testes fotocatalíticos comprovaram a atividade fotocatalítica do catalisador, sendo necessário realizar um estudo sobre a influência de aditivos, concentração de catalisador, concentração inicial de cromo (VI), entre outros.

Agradecimentos

Os autores agradecem às agências brasileiras CNPq, CAPES e Fundação Araucária pelo apoio financeiro para este trabalho, ao C2MMa e à Central de Análises - CA pelas análises realizadas, e à Empresa Brasileira de Mineração e Metalurgia — CBMM pela doação do Nb_2O_5

Conflito de interesse

Não há conflito de interesse.

REFERÊNCIAS

ALMEIDA, Joana.C.et al. *Chromium removal from contaminated waters using nanomaterials - a review.* **TrAC Trends in Analytical Chemestry**. V.118, p.277–291, setembro 2019. https://doi.org/10.1016/j.trac.2019.05.005.

AMJAD, Um et al. *MgO* and *Nb2O5* Oxides Used as Supports for Ru-Based Catalysts for the Methane Steam Reforming Reaction. **Catalisis Today**, v.257, p.122–130, novembro 2015. doi:10.1016/j.cattod.2015.02.010. Disponível em:

https://www.sciencedirect.com/science/article/abs/pii/S0920586115000875. Acesso em: 20 de setembro de 2023.

LOPES, Osmaldo.F.; Paris, E.C.; Ribeiro, C. Synthesis of Nb2O5 Nanoparticles through the Oxidant Peroxide Method Applied to Organic Pollutant Photodegradation: A Mechanistic Study.

Ciência e Tecnologia na era da Inteligência Artificial: Desdobramentos no Ensino Pesquisa e Extensão 20 a 23 de novembro de 2023 - *Campus Ponta Grossa, PR*

Applied Catalysis B: Environmental, v.144, p.800–808, janeiro 2014.

doi:10.1016/j.apcatb.2013.08.031. Disponível em:

https://www.sciencedirect.com/science/article/abs/pii/S0926337313005316. Acesso em: 20 de setembro de 2023.

MAMAIS, Daniel et al. *Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations*. *Chemosphere*. v.152, p.238–244, junho 2016 https://doi.org/10.1016/j.chemosphere.2016.02.124.

NITHYA, K.et al. *Algal Biomass Waste Residues of Spirulina platensis for chromium adsorption and modeling studies. Journal Environmental Chemical Engineering*. v.7, p.103273, outubro 2019. https://doi.org/10.1016/j.jece.2019.103273.

SAWALHA, Hassan et al. *Wastewater from leather tanning and processing in Palestine:* characterization and management aspects. *Journal of Environmental Management*. v.251, p109596, dezembro 2019. https://doi.org/10.1016/j.jenvman.2019.109596.

SHANKER, Arun K. et al. *Chromium toxicity in plants. Environment International*. v.31, p.739–753, julho 2005. https://doi.org/10.1016/j. envint.2005.02.003.

SUN, Jing-Mei., Li, F., Huang, J., 2006. *Optimum pH for Cr 6b Co-removal with mixed Cu2b*, *Zn2b*, *and Ni2b precipitation*. *Industrial & Engineering Chemistry Research*. v.45, p1557–1562, janeiro 2006. DOI:10.1021/ie0509560. Disponível em: https://pubs.acs.org/doi/10.1021/ie0509560. Acesso em: 20 de setembro de 2023.

TANABE, Kozo. Application of Niobium Oxides as Catalysts. *Catalysis Today*, v.8, n.1, p.1–11, outubro 1990. doi:10.1016/0920-5861(90)87003-L. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/092058619087003L. Acesso em: 20 de setembro de 2023.

UN, Umran.T., Onpeker, S.E., Ozel, E. *The treatment of chromium containing wastewater using electrocoagulation and the production of ceramic pigments from the resulting sludge. Journal of Environmental Management*. v.200, p.196–203, setembro 2017. https://doi.org/10.1016/j.jenvman.2017.05.075.

WISE, Sandra S., Pierce, J., Sr, W. *Chromium and genomic stability*. *Mutation research/Fundamental and Molecular Mechanisms od Matagenesis*. v.733, p.78–82, maio 2012. https://doi.org/10.1016/j.mrfmmm.2011.12.002.

YAN, Junging et al. *Nb2O5/TiO2 Heterojunctions: Synthesis Strategy and Photocatalytic Activity*. . *Applied Catalysis B: Environmental*. v.152–153, p.280–288, junho 2014. doi:10.1016/j.apcatb.2014.01.049. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0926337314000691. Acesso em: 20 de setembro de 2023.

YAO, Qi et al. *Mechanism and effect of hydroxylterminated dendrimer as excellent chrome exhausted agent for tanning of pickled pelt. Journal of Cleaner Production*. v.202, p.543–552, novembro 2018. https://doi.org/10.1016/j.jclepro.2018.08.164.